This routine implements K-means clustering using the Pham-Dimov-Nguyen algorithm for
choosing the best K.
"Selection of K in K-means clustering", Proc. IMechE, Part C: J. Mechanical Engineering Science, v.219
(best-cluster ...)
(best-cluster dataset cluster-args k)
Inputs:
* dataset: (string) Dataset ID for the dataset to be clustered
* cluster-args: (map) cluster function arguments
* k: (number) number of clusters
Output: (cluster) Created cluster for K
This function is used by (best-k-means ...) to do a K-means
clustering of the dataset using the WhizzML cluster function with
the specified K.
This routine implements K-means clustering using the Pham-Dimov-Nguyen algorithm for
choosing the best K.
"Selection of K in K-means clustering", Proc. IMechE, Part C: J. Mechanical Engineering Science, v.219
(best-cluster ...)
(best-cluster dataset cluster-args k)
Inputs:
* dataset: (string) Dataset ID for the dataset to be clustered
* cluster-args: (map) cluster function arguments
* k: (number) number of clusters
Output: (cluster) Created cluster for K
This function is used by (best-k-means ...) to do a K-means
clustering of the dataset using the WhizzML cluster function with
the specified K.
This routine implements K-means clustering using the Pham-Dimov-Nguyen algorithm for
choosing the best K.
"Selection of K in K-means clustering", Proc. IMechE, Part C: J. Mechanical Engineering Science, v.219
(best-cluster ...)
(best-cluster dataset cluster-args k)
Inputs:
* dataset: (string) Dataset ID for the dataset to be clustered
* cluster-args: (map) cluster function arguments
* k: (number) number of clusters
Output: (cluster) Created cluster for K
This function is used by (best-k-means ...) to do a K-means
clustering of the dataset using the WhizzML cluster function with
the specified K.